Are endogenous opioid mechanisms involved in the effects of aerobic exercise training on chronic low back pain? A randomized controlled trial

Stephen BruehlA,*, John W. BurnsB, Kelli Koltync, Rajnish Guptaa, Asokumar Buvanendranb, David Edwardsa, Melissa Chonta, Yung Hsuan Wub, Dima Qu’d, Amanda Stonena

Abstract
Aerobic exercise is believed to be an effective chronic low back pain (CLBP) intervention, although its mechanisms remain largely untested. This study evaluated whether endogenous opioid (EO) mechanisms contributed to the analgesic effects of an aerobic exercise intervention for CLBP. Individuals with CLBP were randomized to a 6-week, 18-session aerobic exercise intervention (n = 38) or usual activity control (n = 44). Before and after the intervention, participants underwent separate laboratory sessions to assess responses to evoked heat pain after receiving saline placebo or intravenous naloxone (opioid antagonist) in a double-blinded, crossover fashion. Chronic pain intensity and interference were assessed before and after the intervention. Endogenous opioid analgesia was indexed by naloxone–placebo condition differences in evoked pain responses (blockade effects). Relative to controls, exercise participants reported significantly greater pre–post intervention decreases in chronic pain intensity and interference (Ps < 0.04) and larger reductions in placebo condition evoked pain responsiveness (McGill Pain Questionnaire—Short Form [MPQ]-Total). At the group level, EO analgesia (MPQ-Total blockade effects) increased significantly pre–post intervention only among female exercisers (P = 0.03). Dose–response effects were suggested by a significant positive association in the exercise group between exercise intensity (based on meeting heart rate targets) and EO increases (MPQ-Present Pain Intensity; P = 0.04). Enhanced EO analgesia (MPQ-Total) was associated with a significantly greater improvement in average chronic pain intensity (P = 0.009). Aerobic exercise training in the absence of other interventions appears effective for CLBP management. Aerobic exercise–related enhancements in endogenous pain inhibition, in part EO-related, likely contribute to these benefits.

Keywords: Chronic pain, Evoked pain, Aerobic exercise, Clinical trial, Endogenous opioid, Naloxone

1. Introduction
Chronic pain, Evoked pain, Aerobic exercise, Clinical trial, Endogenous opioid, Naloxone

A recent federal report on pain management best practices recognizes exercise as a core component of chronic pain (CP) management. Various reviews conclude that exercise, broadly defined, effectively reduces CP intensity and dysfunction, with small to moderate effects. Aerobic exercise training is often one component of exercise programs for CP. Several studies suggest that aerobic exercise training may be effective for CP management. At the group level, EO analgesia (MPQ-Total blockade effects) increased significantly pre–post intervention only among female exercisers (P = 0.03). Dose–response effects were suggested by a significant positive association in the exercise group between exercise intensity (based on meeting heart rate targets) and EO increases (MPQ-Present Pain Intensity; P = 0.04). Enhanced EO analgesia (MPQ-Total) was associated with a significantly greater improvement in average chronic pain intensity (P = 0.009). Aerobic exercise training in the absence of other interventions appears effective for CLBP management. Aerobic exercise–related enhancements in endogenous pain inhibition, in part EO-related, likely contribute to these benefits.

Keywords: Chronic pain, Evoked pain, Aerobic exercise, Clinical trial, Endogenous opioid, Naloxone

Sponsorships or competing interests that may be relevant to content are disclosed at the end of this article.

*Corresponding author. Address: Department of Anesthesiology, Vanderbilt University Medical Center, 701 Medical Arts Building, 1211 Twenty-First Ave South, Nashville, TN 37212, United States. Tel.: (615) 936-1821; fax: (615) 936-8883. E-mail address: Stephen.Bruehl@vumc.org (S. Bruehl).

© 2020 International Association for the Study of Pain
http://dx.doi.org/10.1097/j.pain.000000000001969

December 2020 · Volume 161 · Number 12

www.painjournalonline.com 2887

Copyright © 2020 by the International Association for the Study of Pain. Unauthorized reproduction of this article is prohibited.
In summary, most previous trials have not tested aerobic exercise interventions against a natural history control to permit isolation of specific aerobic training effects, and nearly all mechanistic studies have focused on individuals without CP and the effects of acute exercise rather than sustained aerobic exercise training. Finally, previous studies examining possible EO mechanisms have focused exclusively on effects of acute exercise. To address these gaps, the current randomized controlled trial (RCT) examined the effects of a 6-week (18-session) supervised aerobic exercise training program on changes in clinical outcomes in patients with CP and tested whether this intervention altered evoked pain responsiveness and EO analgesia outside the acute exercise context. We hypothesized that relative to no-intervention controls, aerobic exercise would reduce pain intensity and dysfunction in patients with CP and would produce simultaneous decreases in evoked pain responsiveness and increases in EO analgesia if these mechanisms contributed to the intervention’s benefits. Given known sex differences in pain responsiveness,\(^4\) we examined possible moderation of the hypothesized effects by sex.

2. Method

2.1. Design

This study was part of a RCT to evaluate the effects of a structured aerobic exercise training program on chronic low back pain (CLBP) and opioid analgesic responsiveness and to assess the role of EO mechanisms in observed intervention effects (NCT02469077). The study used a parallel-group, mixed design, with study drugs (placebo, morphine, and naloxone) administered in a double-blinded fashion in a randomized, counterbalanced (crossover) order across 3 separate identical sessions (conducted over a 10-day period), with this laboratory protocol performed both before and after either an 18-session (6-week) aerobic exercise training program or a usual activity control condition. Given the focus of the current work on the effects of the intervention on CP-related outcomes and the potential role of EO mechanisms in those effects, data for the morphine condition are not presented here. The study was conducted at 2 separate study locations using identical procedures in parallel and in a closely coordinated fashion. All procedures were approved by the institutional review boards at the respective institutions.

2.2. Participants

Participants included 82 individuals with CLBP who were not using opioid analgesics on a daily basis. Participants using as-needed opioid analgesics were asked to abstain from any opioid use within the 3 days before each laboratory session (confirmed through urine opioid screen), and all participants were instructed not to use any nonsteroidal anti-inflammatory drugs or over-the-counter analgesics for at least 12 hours before each laboratory session. Participants were recruited through an informatics-based targeted recruiting system mining electronic medical records to identify potentially eligible patients previously indicating a willingness to participate in research studies ("MyResearch at Vanderbilt"), online advertisements on the Vanderbilt employee email recruitment system, the Rush Pain Clinic, advertisements in local print media and Facebook, and posted flyers. General criteria for participation included age between 18 and 55 years; no self-reported history of liver or kidney disorders, posttraumatic stress disorder, bipolar disorder, psychotic disorder, diabetes, seizure disorder, or alcohol or drug dependence; and no daily use of opioid analgesics. To maximize potential exercise intervention effects, participants were additionally required to be low active, that is, engaged in moderate or vigorous exercise <2 days per week and <60 min per week (based on responses to 6 questions assessing moderate to vigorous activity on the Centers for Disease Control and Prevention Behavioral Risk Factor Surveillance Survey\(^{19}\)). Chronic low back pain was defined as daily low back pain of at least 3 months’ duration, with an average past month severity of at least 3/10 on a 0 to 10 verbal numeric pain intensity scale. All participants were required to be able to provide documentation of a previous medical provider diagnosis consistent with CLBP. Individuals self-reporting CP related to malignancy or autoimmune disorders were excluded, as were individuals who were pregnant (determined by urine pregnancy screens). All participants were compensated for their time ($75 for initial screening, $100 for each laboratory visit, and $30 for each completed exercise session). A CONSORT flowchart is provided in Figure 1, with n = 44 participants randomized to the exercise intervention and n = 49 randomized to the control condition. The originally targeted sample size of n = 58 per group was chosen based on an a priori power analysis to permit at least 80% power to detect group differences in exercise-related changes in EO function, assuming a 2-tailed P < 0.05 criterion for significance. Of the randomized participants, n = 38 in the exercise group and n = 44 controls completed the intervention with full pre–post intervention laboratory data (for EO assessment) available for analysis in the current study. All participants were recruited by the research coordinator at each site, with all study procedures performed between September 28, 2015, and September 17, 2019. The trial ended when the grant support ended.

2.3. Study drugs

The opioid antagonist naloxone was administered in 1 laboratory session before the intervention and 1 session after the intervention. This naloxone condition was included to permit derivation of a quantitative index of EO system function, specifically the difference in evoked pain responses between naloxone and placebo conditions.\(^7,8\) Naloxone was infused incrementally, with an initial 8-mg dose administered before the first heat pain trial (detailed below), followed by saline placebo before the second heat pain trial, a 4-mg maintenance dose before the third trial (to maintain full opioid blockade during the remaining trials), and then a final saline placebo dose before the fourth trial. Normal saline was infused in the same incremental manner across all 4 trials during the placebo condition. A drug order randomization schedule was prepared by an independent statistician using the Proc Plan procedure in SAS version 9.2 (SAS Institute, Cary, NC), with drug order randomized separately for preintervention and postintervention laboratory sessions. Blinding of drug order was maintained, and randomized drug assignment was performed according to the randomization schedule by the investigational pharmacy at each site.

2.4. Measures

2.4.1. Clinical chronic pain and functional measures

2.4.1.1. Numeric Rating Scale pain intensity

Consistent with IMMPACT recommendations,\(^19\) an 11-point Numeric Rating Scale (NRS) anchored with “no pain” and “worst possible pain” was used to rate average (primary clinical outcome)
and worst (secondary outcome) clinical back pain over the previous 24 hours, at both prerandomization baseline and again at the final postintervention laboratory session. Numeric Rating Scale ratings of average and worst pain are simple overall intensity measures that are sensitive to change with intervention.32

2.4.1.2. Short-Form McGill Pain Questionnaire 2
To more specifically assess the various qualitative aspects of CP, clinical back pain over the preceding week (secondary outcome) was also assessed at prerandomization baseline and again after the intervention using the Short-Form McGill Pain Questionnaire 2 (MPQ-2).20,21 The MPQ-2 is a validated measure containing 22 items rated using an NRS format (0 = none and 10 = worst possible). It contains 4 subscales (Continuous, Intermittent, Neuropathic, and Affective).

2.4.1.3. Pain interference
The PROMIS Short Form v1.0—Pain Interference 8a scale (PROMIS Interference) was used to assess pain-related life interference (secondary outcome) over the past week.2 It assesses the impact of pain on daily social, emotional, physical, and recreational activities. Items are rated on a 5-point scale, ranging from “almost never” (0) to “almost always” (4). Item scores were summed, and raw scores were converted into T scores as per standard scoring guidelines.48 Higher scores indicate greater pain-related life interference. The PROMIS Interference scale has been shown to be sensitive to change with intervention.51

2.4.1.4. Patient Global Impression of Change
A 7-item Patient Global Impression of Change (PGIC) measure was completed at the final laboratory session. This secondary
outcome measure used the standard format recommended by IMMPACT, with response categories ranging from "very much worse" to "very much better."

2.4.2. Evoked pain intensity measure

Perceived intensity of the thermal pain stimulus was assessed using the original MPQ-Short Form (MPQ-SF). It contains Sensory and Affective subscales (all items on a 4-point scale rated from 0 = “none” to 3 = “severe”), which are combined into a Total score (to avoid redundancy, only the MPQ-SF Total [primary evoked pain outcome] score is reported here). Use of a different version of the MPQ to assess the evoked pain stimuli vs clinical CP was implemented to minimize potential participant confusion regarding the type of pain being rated (evoked vs chronic). The MPQ-SF also includes a 6-point Present Pain Intensity (PPI) numeric scale of overall pain intensity. Ratings are made on a 0 (“no pain”) to 5 (“excruciating”) scale.

2.4.3. Heart rate measures

Heart rate (HR) was assessed in 2 ways. First, for all participants, resting predrug HR was assessed at the beginning of each laboratory session using an automated oscillometric blood pressure monitor (GE Dinamap Procare 400). Changes in resting HR from preintervention baseline to session 4 (1 week after the 6-week intervention) were derived, with negative values indicating decreased HR.

To evaluate aerobic exercise intensity (in the exercise group alone), the mean amount of time per exercise session (across all completed exercise sessions) in which HR was in the desired training zone was calculated (based on the percentage of HR reserve [HRR]; see Intervention description below). These data were derived from HR assessed at 5-minute intervals during all aerobic training sessions through a Polar HR monitor (Polar Electro Inc., Bethpage, NY).

2.5. Evoked pain stimulus

The evoked pain stimulus in the current study was a heat pain task using a computerized Medoc TSAll NeuroSensory Analyzer (Medoc US., Minneapolis, MN), as in our previous work. The thermode was placed at a slightly different location of the ventral forearm for each stimulus to avoid local sensitization effects. After administration of each incremental drug dose and a 10-minute rest to permit peak drug activity to be achieved, 3 trials were conducted for heat pain tolerance (with the mean value used for analyses), with the thermode starting at an adaptation temperature of 40°C and increasing at a ramp rate of 0.5°C per second until tolerance was reached. Immediately upon completion of the final heat pain tolerance trial at each drug dosage, participants were asked to rate the pain just experienced using the MPQ-SF described previously. Participants underwent standardized training to familiarize them with the thermal stimulus procedures before undergoing the evoked pain task for the first time.

2.6. Intervention

Participants were randomly assigned to the exercise intervention or usual activity control group by the study coordinators using a 1:1 randomization schedule developed by an independent statistician before study initiation using the Proc Plan procedure in SAS version 9.2 (SAS Institute, Cary, NC). Experimenters were not blinded to the intervention condition (but were blinded to drug order in the laboratory sessions). The exercise intervention was an aerobic exercise training program designed to produce a training effect for all adherent participants, but which was sensitive to the potential for initial symptom exacerbation in patients with CLBP by incorporating progressive increases in the workload during the first 2 weeks. Individuals randomly assigned to the exercise intervention participated in a supervised, individual aerobic exercise training program 3 times per wk for 6 weeks. This protocol was similar to that used in previous work showing reduced evoked pain responses in healthy individuals and improved endurance and function in patients with CLBP. To enhance and monitor adherence, all the exercise sessions were conducted in an on-campus exercise facility and supervised by ACSM-certified personal trainers trained in study procedures.

Each exercise session consisted of a 5-minute warm-up, then 30 minutes of aerobic exercise followed by a 5-minute cool-down period. Aerobic exercise included treadmill walking/running, stepping, elliptical, or cycling exercise as preferred by the participant to minimize symptom exacerbation (ie, acute increases in back pain) while maximizing adherence to the training program. Effort levels were standardized using HR and rating of perceived exertion (RPE) monitoring as recommended by the American College of Sports Medicine. At the beginning of the intervention, target HR zones were established using the Karvonen formula and HRR, with a duration of exercise standardized at 30 minutes with a target exercise intensity between 70% and 85% HRR (RPE = 15, hard). Because of the study’s focus on deconditioned individuals with CLBP, duration and intensity of exercise was progressively increased up to the target intensity during the first 2 weeks to avoid symptom exacerbation and minimize study drop-out. Specifically, participants began with 10 to 15 minutes of exercise between 40% and 55% HRR (RPE = 11-12, light) during the first week, 20 to 30 minutes of exercise between 55% and 70% HRR (RPE = 12-13, somewhat hard) during the second week, and then 30 minutes of exercise between 70% and 85% HRR (RPE = 14-16, hard) for the remainder of the study. To ensure that participants were exercising within their prescribed workload during each session, HR and RPE were assessed every 5 minutes during exercise using HR monitors (see above) and Borg’s 6 to 20 RPE scale.

Participants assigned to the usual activity control condition (all of whom were low active as per the inclusion criteria) were asked to maintain their normal daily activity levels throughout the study.

2.7. Procedure

All procedures were conducted at the Vanderbilt General Clinical Research Center or a dedicated research room at the Rush University Pain Center. After providing informed consent, participants engaged in an assessment session during which they completed a packet of questionnaires, including CP and functional measures and demographic information. Individuals then participated in identical experimental procedures across the drug conditions, with all sessions scheduled at the same time of the day within individuals to control for variance due to circadian rhythms. The protocol for the laboratory sessions is summarized in Figure 2.

Participants remained seated upright in a chair throughout all laboratory procedures. The investigational pharmacy at each institution prepared and provided the study drugs in a blinded fashion to the study nurses. At the beginning of each session, after a 5-minute seated rest, resting HR was determined as previously described. Next, an indwelling venous cannula was inserted into the nondominant arm by a trained research nurse under physician
supervision. Participants then received (through the cannula) their first dose of the study drug as assigned per the randomization schedule. After a 10-minute rest period to allow drug activity to peak, participants completed the first evoked thermal pain tasks and ratings of evoked pain. Fifteen minutes later, the second assigned drug dose was given followed by a 10-minute rest and then the evoked thermal pain tasks and pain ratings, with the same procedure followed through the fourth and final drug dose. All participants remained in the laboratory under observation for 1 hour after the final drug dose to allow drug effects to remit, after which they were released to a responsible adult.

After completing the final preintervention laboratory session, participants then began their randomized intervention (exercise or control). The exercise group completed 18 supervised aerobic exercise sessions over the following 6 weeks (minimum per protocol was 13 sessions, but all completed at least 16 sessions). Within 10 days of the final exercise session, follow-up postintervention laboratory assessment was begun, with participants again completing the laboratory protocol described above over a 10-day period. Postexercise laboratory data indexed EO status (Group) and sex on outcomes, controlling for baseline values of the targeted outcome (ie, baseline-corrected change). The source of significant sex interactions was determined using simple effects analyses (ANCOVAs conducted separately in men and women). Estimated marginal means (±SE) from ANCOVAs are presented to portray the source of significant main and interaction effects, controlling for relevant covariates. Analyses were conducted on a per-protocol basis, given the focus on changes in EO outcomes (which were obtained at follow-up only in individuals who completed the exercise protocol). All analyses used the maximum number of available cases and a 2-tailed probability value of P < 0.05 as the criterion for significance.

3. Results

3.1. Preliminary analyses

None of the sample characteristics were significantly different between the intervention and control groups (all Ps > 0.10; Table 1). Most participants in both groups were female, white, and non-Hispanic. Chronic pain was characterized as moderate in intensity and of long duration. Less than 16% of the sample was using as-needed opioids in either group, and none had used opioids in the 3 days before each laboratory session (confirmed by urine screen). In terms of exercise protocol engagement, 94.7% of the exercise group participants completed the full 18 sessions of exercise, with 1 participant (2.6%) completing 17 sessions and 1 (2.6%) completing 16 sessions. The mean amount of time per session during which the achieved HR was within the target training zone based on HRR was 21.1 minutes (SD = 4.65; range = 6.7-27.8 minutes) over the full exercise protocol, indicating that the intervention approached, but fell...
short of the desired intensity for the group as a whole, but with wide variability. Two participants were able to exercise in the target HR zone only for an average of 10 minutes per session throughout the 18-session protocol. Preintervention and post-intervention raw values for all outcomes are summarized by the intervention group in Table 2.

3.2. Aerobic exercise intervention efficacy

3.2.1. Chronic pain outcomes

Analyses of covariance controlling for baseline values indicated that NRS ratings of past 24-hour average pain intensity declined significantly more in the exercise group than in the control group [F(1,75) = 4.74, P = 0.033, \(\eta^2 = 0.059 \)]. Parallel analyses for worst 24-hour NRS pain intensity revealed similar effects, with the exercise group again showing significantly larger improvements than controls [F(1,77) = 9.195, P = 0.003, \(\eta^2 = 0.107 \)]. The Group × Sex interaction was nonsignificant for both measures (Ps > 0.20). Pre–post intervention changes (estimated marginal means adjusting for baseline differences) for both average and worst 24-hour NRS pain intensities are displayed in Figure 3. A reduction of 30% in NRS pain ratings from preintervention baseline has been suggested as a criterion indicating at least moderate clinically important improvement in clinical trials. In the exercise group, 40.5% of participants reported at least a 30%

Table 1

Baseline sample characteristics by group.

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Group</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Exercise (n = 38)</td>
</tr>
<tr>
<td>Sex (% female)</td>
<td>55.3</td>
</tr>
<tr>
<td>Race (%)</td>
<td></td>
</tr>
<tr>
<td>White</td>
<td>60.5</td>
</tr>
<tr>
<td>African American</td>
<td>26.3</td>
</tr>
<tr>
<td>Ethnicity (% non-Hispanic)</td>
<td>94.7</td>
</tr>
<tr>
<td>Age (mean ± SD, y)</td>
<td>40.0 ± 10.00</td>
</tr>
<tr>
<td>Body mass index (mean ± SD)</td>
<td>29.9 ± 7.54</td>
</tr>
<tr>
<td>Pain duration (median ± IQR)</td>
<td>75.6 ± 112.81</td>
</tr>
<tr>
<td>Postmenopausal (%)</td>
<td>19.0</td>
</tr>
<tr>
<td>Birth control or hormone replacement (%)</td>
<td>19.0</td>
</tr>
<tr>
<td>As-needed opioid use (%)</td>
<td>15.8</td>
</tr>
<tr>
<td>Neuroleptic use (%)</td>
<td>7.9</td>
</tr>
<tr>
<td>Antidepressant use (%)</td>
<td>23.7</td>
</tr>
</tbody>
</table>

All group comparisons are nonsignificant (Ps > 0.10).

IQR, interquartile range.

Table 2

Clinical, placebo condition evoked pain, and EO outcomes (mean ± SD) before the intervention and after the intervention by group.

<table>
<thead>
<tr>
<th></th>
<th>Exercise Preintervention</th>
<th>Exercise Postintervention</th>
<th>Control Preintervention</th>
<th>Control Postintervention</th>
</tr>
</thead>
<tbody>
<tr>
<td>Past 24 h average NRS pain</td>
<td>4.54 ± 2.22</td>
<td>3.22 ± 2.02</td>
<td>5.35 ± 2.26</td>
<td>4.69 ± 2.28</td>
</tr>
<tr>
<td>Past 24 h worst NRS pain</td>
<td>6.32 ± 2.17</td>
<td>4.27 ± 2.32</td>
<td>6.53 ± 2.04</td>
<td>5.98 ± 2.45</td>
</tr>
<tr>
<td>MPQ-2 Continuous</td>
<td>4.07 ± 1.87</td>
<td>2.04 ± 1.79</td>
<td>4.29 ± 2.15</td>
<td>2.91 ± 2.33</td>
</tr>
<tr>
<td>MPQ-2 Intermittent</td>
<td>2.94 ± 2.41</td>
<td>1.21 ± 1.48</td>
<td>3.71 ± 2.41</td>
<td>1.87 ± 2.08</td>
</tr>
<tr>
<td>MPQ-2 Neuropathic</td>
<td>1.27 ± 1.45</td>
<td>0.5 ± 0.070</td>
<td>1.80 ± 1.89</td>
<td>0.70 ± 1.11</td>
</tr>
<tr>
<td>MPQ-2 Affective</td>
<td>2.24 ± 2.08</td>
<td>0.60 ± 1.00</td>
<td>2.31 ± 2.35</td>
<td>1.25 ± 2.34</td>
</tr>
<tr>
<td>PROMIS Interference T score</td>
<td>60.58 ± 5.86</td>
<td>55.67 ± 6.81</td>
<td>62.42 ± 7.62</td>
<td>59.51 ± 6.03</td>
</tr>
<tr>
<td>Patient Global Impression of Change</td>
<td>—</td>
<td>5.22 ± 0.89</td>
<td>—</td>
<td>3.98 ± 1.03</td>
</tr>
<tr>
<td>Placebo thermal pain tolerance</td>
<td>47.64 ± 1.55</td>
<td>47.73 ± 1.72</td>
<td>47.31 ± 1.56</td>
<td>47.51 ± 1.46</td>
</tr>
<tr>
<td>Placebo thermal MPQ-PPI</td>
<td>2.67 ± 1.02</td>
<td>2.50 ± 0.91</td>
<td>2.45 ± 1.17</td>
<td>2.28 ± 1.21</td>
</tr>
<tr>
<td>EO—thermal tolerance</td>
<td>0.09 ± 0.76</td>
<td>0.17 ± 0.52</td>
<td>~0.06 ± 0.69</td>
<td>0.08 ± 0.55</td>
</tr>
<tr>
<td>EO—thermal MPQ-TOT</td>
<td>−0.28 ± 4.61</td>
<td>1.61 ± 4.67</td>
<td>0.92 ± 3.81</td>
<td>0.28 ± 3.76</td>
</tr>
<tr>
<td>EO—thermal MPQ-PPI</td>
<td>−0.02 ± 0.52</td>
<td>0.21 ± 0.52</td>
<td>~0.01 ± 0.54</td>
<td>0.10 ± 0.46</td>
</tr>
</tbody>
</table>

All baseline (preintervention) differences between groups are nonsignificant.

EO, Endogenous Opioid Index (naloxone minus placebo condition value for the measure of interest); MPQ-2, McGill Pain Questionnaire 2; MPQ-PPI, McGill Pain Questionnaire Short Form—Present Pain Intensity; MPQ-TOT, McGill Pain Questionnaire Short-Form Total Score; NRS, Numeric Rating Scale.
reduction in worst NRS pain from preintervention baseline to postintervention, compared with only 27.3% of the control group, with comparable proportions observed for average NRS pain improvements (44.4% vs 31.0%, respectively).

Analyses of pre–post intervention changes in specific CP qualities (rated over the past week) on the MPQ-2 also revealed significant intervention effects. Pre–post intervention reductions in MPQ-2 Continuous subscale ratings were significantly greater in the exercise group than those in controls [F(1,77) = 4.15, P = 0.045, η² = 0.052; Exercise: M = 2.1, SE = 0.29; Control: M = 1.3, SE = 0.28]. A similar nonsignificant trend was also noted for the MPQ-2 Affective subscale [F(1,77) = 3.15, P = 0.08, η² = 0.04; Exercise: M = 1.7, SE = 0.27; Control: M = 1.0, SE = 0.27]. Group × Sex interactions for both measures were nonsignificant (Ps > 0.46). Neither the main effect of Group nor the Group × Sex interaction was significant for the MPQ-2 Intermittent or Neuropathic subscales (Ps > 0.24).

3.2.2. Pain-related interference

Analysis of covariance revealed significant main effects of the intervention on PROMIS Interference T scores (baseline adjusted). Improvements in pain interference were significantly larger in the exercise group than those in the control group [F(1,77) = 5.58, P = 0.021, η² = 0.068; Exercise: M = 5.3, SE = 0.84; Control: M = 2.5, SE = 0.83]. The Group × Sex interaction was nonsignificant (P > 0.93). The magnitude of improvement in PROMIS Interference T scores in the exercise intervention group equates to an effect size of 0.53 SD units, a level that is considered to be clinically important for functional pain outcomes.22

3.2.3. Patient Global Impression of Change

As suggested by IMMPACT guidelines,22 the percentage of participants in each group endorsing each response category on the PGIC measure is provided in Table 3. In the exercise group, 31.6% reported being “much improved” or “very much improved,” whereas in the control group only 9.1% met this criterion. Analysis of covariance revealed a significant Group × Sex interaction on PGIC ratings [F(1,78) = 4.90, P = 0.03, η² = 0.059]. Simple effects analyses indicated that this interaction was due to male exercise participants reporting notably greater overall improvement than male controls [F(1,30) = 44.92, P < 0.001; Exercise: M = 5.53, SE = 0.18; Control: M = 3.73, SE = 0.20], with a smaller but nonetheless significant difference in PGIC ratings between conditions in female participants [F(1,48) = 8.16, P = 0.006; Exercise: M = 5.0, SE = 0.23; Control: M = 4.1, SE = 0.19].

3.2.4. Changes in heart rate measures

Mean baseline-adjusted changes in resting HR did not differ significantly between groups [F(1,75) = 0.45, P = 0.50, η² = 0.006], although the exercise group showed a small directional reduction in group mean HR as expected (M = −0.38, SE = 1.52) while controls showed small increases in mean resting HR (M = 1.00, SE = 1.39). Within the exercise group, reductions in resting HR from preintervention to postintervention were significantly associated with improvements in CP as indexed by average [r(33) = −0.52, P = 0.002] and worst past 24-hour NRS pain intensity [r(33) = −0.44, P = 0.008], as well as the MPQ-2 Continuous [r(33) = −0.36, P = 0.034] and Intermittent [r(33) = −0.43, P = 0.010] subscales. There were no comparable associations in the control group between resting HR changes over the course of the trial and CP outcomes (all Ps > 0.42). Within the exercise group, HR changes from preintervention to postintervention were not significantly associated with the mean time per exercise session spent in the target HR zone (P > 0.10).

3.3. Intervention effects on evoked pain outcomes

Evoked thermal pain responses at baseline did not differ significantly between groups (all Ps > 0.17). Analysis of covariance revealed a significant main effect of intervention Group on placebo condition MPQ-SF Total ratings [F(1,77) = 5.80, P = 0.018, η² = 0.064]. Participants in the exercise group displayed slightly improved pain responsiveness (decreased thermal pain ratings) after the 6-week intervention (M = 0.33, SE = 0.70), whereas control group participants reported an increase in thermal pain responses over time (M = −2.04, SE = 0.68). The Group × Sex interaction was not significant in this analysis (P > 0.63). The analysis above did not appear to be confounded by any intervention-related changes in thermal pain tolerance; inclusion of pre–post changes in pain tolerance as an additional control variable in the analysis above left the significant intervention effect on placebo condition MPQ-TOT ratings essentially unchanged (P = 0.025). However, we note that the group-level mean reduction in evoked pain responsiveness observed in the exercise condition was not significantly different from zero [t(37) = 0.63, P = 0.54].

Table 3

<table>
<thead>
<tr>
<th>Distribution (%) of Patient Global Impression of Change responses at the end of the intervention period by group.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Response category</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Very much worse</td>
</tr>
<tr>
<td>Much worse</td>
</tr>
<tr>
<td>Minimally worse</td>
</tr>
<tr>
<td>No change</td>
</tr>
<tr>
<td>Minimally improved</td>
</tr>
<tr>
<td>Much improved</td>
</tr>
<tr>
<td>Very much improved</td>
</tr>
</tbody>
</table>
Similar analyses of placebo condition MPQ-SF PPI ratings and thermal pain tolerance did not reveal any significant main effects of Group or Group × Sex interaction effects (all P's > 0.40).

3.4. Intervention effects on endogenous opioid outcomes

Blockade effect values did not differ significantly at preintervention baseline across groups (all P's > 0.11). Analyses of evoked pain MPQ-SF Total blockade effects revealed a trend approaching significance for an intervention effect moderated by participant sex [F(1,75) = 3.11, P = 0.082, \(\eta^2 = 0.04 \)]. This interaction trend was further explored given the unique nature of these data. Women in the exercise group exhibited significantly larger increases in EO function (M = 1.68, SE = 0.91) than women in the control group (M = −0.93, SE = 0.80; F(1,46) = 5.35, P = 0.025]. This intervention effect was not significant in men [F(1,28) = 0.47, P = 0.499; Exercise: M = 0.67, SE = 1.07; Control: M = 1.47, SE = 1.08]. Main effects of Group and Group × Sex interactions for changes in blockade effects derived for thermal pain tolerance (P's > 0.15) and MPQ-SF PPI ratings (P's > 0.17) were all nonsignificant, although the pattern of means for the latter measure was consistent with MPQ-SF Total results (i.e., women exercisers experienced the greatest EO function increases of any group).

We next evaluated the possibility that group-level mean intervention effects on EO function may have been obscured to some degree by individual differences in exercise dose (i.e., exercise intensity). In the exercise group, participants with a greater average number of minutes across all training sessions in the target HR zone (based on HRR), as expected, were found to exhibit significantly greater increases in EO analgesia based on the MPQ-SF PPI measure [\(r(35) = 0.33, P = 0.043 \)]. Similar analyses for tolerance and MPQ-SF Total evoked pain blockade effects were nonsignificant (P's > 0.45).

Intervention-related EO changes appeared to be clinically relevant. Greater enhancements in EO function from preintervention to postintervention in the exercise group as reflected in the MPQ-SF Total blockade effect measure were significantly associated with greater improvements in average NRS past 24-hour pain [\(r(35) = 0.43, P = 0.009 \)], with a similar association just failing to meet the criterion for significance for worst NRS pain [\(r(35) = 0.32, P = 0.052 \)]. Associations between this EO measure and MPQ-2 ratings of past week intermittent pain also approached significance [\(r(35) = 0.28, P = 0.097 \)]. In addition, EO increases as indexed by pain tolerance blockade effects exhibited nonsignificant trends towards associations with greater clinical improvements in worst NRS pain [\(r(35) = 0.28, P = 0.092 \)] and the MPQ-2 Intermittent subscale [\(r(35) = 0.28, P = 0.093 \)].

4. Discussion

Although it is often assumed that aerobic exercise interventions are beneficial for CLBP management, support for this is mixed. Interpretation of existing studies is hindered by small samples, lack of a control condition, or use of an active treatment control. Support from well-designed RCTs regarding efficacy specifically of aerobic exercise for CLBP management remains sparse. This RCT evaluated the efficacy of a supervised aerobic exercise intervention for CLBP provided in the absence of other interventions compared with a usual activity control. Results indicated the intervention led to greater improvements in pain and pain-related life interference over the 8-week trial than were observed in controls. Exercise participants also reported significantly greater global improvements compared with controls. Although both sexes appeared to benefit equally from the intervention in terms of pain and function, men reported greater global benefits of the intervention than women. Overall, findings for clinical outcomes support the efficacy of supervised aerobic exercise training programs in the management of CLBP.

Of more conceptual interest is the question of why aerobic exercise training may be effective for CLBP. Existing studies focusing almost exclusively on pain-free individuals suggested that aerobic exercise might enhance endogenous pain inhibitory capacity, as reflected in reduced evoked pain responsiveness or, more specifically, increased EO analgesia. This latter finding, although intriguing and consistent with the popular idea of the “runner’s high,” is to date based entirely on studies regarding effects of acute exercise in nonpain populations. More specifically, in the exercise group, greater time spent in the target HR zone during exercise training sessions was associated with greater EO analgesia in the laboratory, indicating an aerobic exercise dose–response effect. Exercise-related EO increases, in turn, were associated with greater improvements in CLBP outcomes over the same time period. Despite some support for the EO hypothesis, limited statistical power impacted adversely on our tests of this hypothesis and prohibited an adequate test of statistical mediation. This limited power was a result of the challenges of recruiting for a study requiring 6 extended laboratory sessions and 18 exercise sessions. Although the current results regarding the impact of aerobic exercise on EO analgesic function must be interpreted cautiously, they do suggest the intriguing possibility that regular aerobic exercise may lead to sustained increases in EO function outside of the acute exercise setting, at least in some individuals. This finding is consistent with preclinical work showing increased EO brain levels and analgesia in animals 5 days after completing a 5-week aerobic exercise training protocol. Further work in larger CP samples to examine the magnitude and duration of EO function increases after aerobic training programs appear justified and may help clarify the mechanism of action of such interventions.

Beyond intervention effects on EO function specifically, we also evaluated whether the intervention produced reductions in evoked pain responsiveness that might support a salutary intervention effect on pain modulatory systems. Reductions in evoked pain responding following aerobic exercise have been shown previously in studies of acute exercise effects and studies of prolonged exercise interventions conducted in individuals without CP. Results of the current work provided only limited support for this hypothesis. Specifically, a significant main effect of the intervention on MPQ-
SF Total ratings of evoked pain was noted. Although consistent with previous work, this effect was driven not only by small mean decreases in pain responding in the intervention group (not significantly different from zero) but also by increased pain responding in controls over the intervention period. Reasons for the latter changes are unclear.

Overall, this study provides some support for the hypothesis that aerobic exercise training in individuals with CLBP may exert some of its beneficial clinical effects through enhancement of pain inhibitory function, in part EO-related, that is sustained enough to be observed even outside of the acute exercise context. This is consistent with conclusions of a recent literature review regarding mechanisms underlying exercise hypoalgesia.34 However, another review highlighted work suggesting impaired ability to elicit endogenous analgesia in patients with CP,45 hypothesizing that this may limit exercise benefits in patients with CP.45 Despite possible pain modulatory impairments, our results suggest that it is possible to enhance endogenous analgesia to some degree at least in certain subgroups of patients with CLBP. Factors that may moderate such effects should be considered in future studies. Our results raise the possibility that sex may impact on these training effects, and previous work suggests age could also potentially play a role. Daily opioid analgesic use would also be expected to adversely affect ability for exercise to improve endogenous analgesia, given that it leads to reduced opioid receptor sensitivity through downregulation.

Factors beyond exercise-related EO enhancements must also be considered as potential contributors to the clinical benefits of sustained aerobic exercise training in patients with CLBP. For example, isometric exercise studies suggest that increased endocannabinoid activity might contribute to exercise-related hypoalgesia,35 a finding confirmed in preclinical work.24 Other animal studies suggest that analgesia elicited by aerobic exercise involves peripheral alpha-2 adrenergic receptors.17 Finally, benefits of aerobic exercise training may also be related to the fact that such interventions, at least indirectly, target pain-related disuse, a factor the fear avoidance model indicates is linked to CLBP-related dysfunction.39

Several limitations of the current work must be considered. First, intervention efficacy results generalize only to the context of progressive aerobic exercise training supervised by certified exercise trainers. Moreover, the sample consisted of self-selected patients with CLBP volunteering to complete an 18-session aerobic exercise program and multiple laboratory visits. Results in clinical patients or for self-directed aerobic exercise programs may not be comparable. Second, the control group for the exercise intervention did not incorporate a placebo to control for expectancies. In addition, assessors for trial outcomes were not blinded to the intervention condition. Both factors could have contributed to greater clinical improvements in the exercise group through positive expectancies. On the other hand, laboratory measures, including EO outcomes that were the focus of this study, were assessed in a double-blinded manner and thus were not confounded by expectancy effects. Third, the sample excluded individuals using daily opioids for safety reasons, given that planned naloxone administration would elicit withdrawal symptoms in individuals regularly using opioids. This, and the focus on individuals with low baseline activity levels, may have enhanced our ability to produce intervention-related EO changes. Finally, EO was assessed in separate naloxone and placebo laboratory sessions conducted after completion of the intervention. Owing to scheduling constraints, the final laboratory session was scheduled up to nearly 3 weeks after intervention completion. Although the timing of postintervention outcome assessment matched the laboratory EO assessment schedule, exercise-related EO function enhancements may have diminished in the weeks after the intervention, particularly in individuals not continuing to exercise after study completion. Thus, our findings likely reflect an underestimate of the magnitude of EO enhancements achievable through aerobic training in patients with CLBP, reducing statistical power to test EO hypotheses. In a related issue, although our sample was relatively large compared with many previous related studies, it nonetheless may have had suboptimal statistical power for testing mechanistic hypotheses. Results for EO change measures displayed a number of effects that would have been significant with even a slightly larger sample. Use of 1-tailed statistical tests for EO hypotheses to enhance power given their a priori directional nature would have led to multiple additional significant EO findings.

In summary, supervised progressive aerobic exercise training, when provided in the absence of other intervention, can significantly decrease pain and interference in individuals with CLBP. There was an apparent dose–response effect regarding the degree to which HR training targets were achieved, with evidence supporting enhanced pain inhibitory function, in part EO-related, as a likely contributor to intervention effects. Although replication is necessary, this study for the first time suggests that aerobic training can in some patients with CP enhance natural ability to inhibit pain that extends outside of the acute exercise context into daily life.

Conflict of interest statement

The authors have no conflicts of interest to declare.

Acknowledgements

This research was supported by NIH Grant R01DA037891, training grant T32GM108554, and CTSA award UL1TR002243 from the National Center for Advancing Translational Sciences. The contents of this work are solely the responsibility of the authors and do not necessarily represent official views of the National Center for Advancing Translational Sciences or the National Institutes of Health.

Article history:

Received 27 April 2020
Received in revised form 10 June 2020
Accepted 15 June 2020
Available online 19 June 2020

References

